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,   , 

THE REASON FOR PERFORMING THIS STUDY was to develop and document an 
improved algorithm for determining in computer simulations the locations of 
points relative to prespecified boundary or phase lines. The need for an 
improved algorithm was recognized when a previously-used method was 
discovered to lack sufficient generality. 

THE PRINCIPAL FINDINGS are that a useful algorithm can be developed for 
determining in computer simulations the locations of points relative to 
prespecified boundary or phase lines. This algorithm applies to boundary and 
phase lines of very general shape and configuration, and so improves on those 
previously used in some simulations. It is based on the notion of winding 
number, which is used in the mathematical theory of complex variables. 

THE MAIN ASSUMPTION is that the prespecified boundary or phase lines can 
adequately be approximated by a polygonal line, i.e., a finite number of 
connected straight line segments. 

THE PRINCIPAL LIMITATIONS are that the boundary or phase lines need to be 
defined and entered into computer memory by manual methods—but this is true 
for other point-location algorithms, as well. Also, as in all point-location 
algorithms, points so close to a boundary line as to be affected by 
arithmetical roundoff errors may not be assigned to the correct zones. 

THE SCOPE OF THE WORK is limited to finding an improved algorithm for 
determining the location of points relative to prespecified boundary or phase 
lines. 

THE WORK WAS PERFORMED on the initiative of Dr. Robert L. Helmbold of the US 
Army Concepts Analysis Agency's Model Validation Office. It was reviewed by 
Dr. Daniel Willard of the Office, Deputy Under Secretary of the Army for 
Operations Research; Dr. Ralph Johnson, CSCA-FOT; COL Irving R. Schuetze, 
CSCA-RQN; and Mr. Dick Lester, CSCA-MV. 

Tear-out copies of this synopsis are at back cover. 
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CHAPTER 1 

EXECUTIVE SUKWARY 

1-1. PROBLEM. Develop an algorithm which, given several prespecified 
boundary or phase lines in a plane and a point in the plane, will determine 
where the given point is located relative to the prespecified boundary or 
phase lines. For example, in Figure 1-1, the algorithm should determine 
whether the point is to the left or right of each boundary or phase line. 
(Note: that the boundary or phase lines are considered to be oriented as 
illustrated in Figure 1-1.) Such oriented boundary lines are necessary if 
"left" and "right" are to have meaningful definitions. For the case shown in 
Figure 1-1, point PAPA is to the left of boundary lines ALFA, BRAVO, and 
CHARLIE, and is to the right of boundary line DELTA. 

1-2. BACKGROUND. The need for determining where a given point lies relative 
to a family of boundary lines arises frequently in computer simulations of 
military operations where boundary or phase lines often designate regions 
that need to be treated differently for one reason or another. For example, 
the boundary lines may mark the border between friendly and enemy territory, 
national boundaries, air defense identification zones, areas where special 
rules of engagement (such as free-fire or no-fire) apply, contaminated and 
uncontaminated regions, areas of differing mobility characteristics, unit 
boundaries, fire support coordination lines, and so forth. As Figure 1-1 
illustrates, humans can easily make these determinations if provided with a 
graphical display. However, in military simulations, it often is the case 
that no graphical displays are conveniently available, or that all the 
operations are to take place within the computer simulation without human 
monitoring or intervention, or both. In such cases, it is necessary to 
provide the computer with an algorithm for determining where the given point 
is located relative to the boundary lines. 

For instance, the Nuclear Fire Planning and Assessment Model (NUFAM) at the 
US Army Concepts Analysis Agency (CAA) employs a boundary line to mark the 
separation between friendly and enemy target elements. An inspection of the 
algorithm originally proposed for that purpose revealed that it was: 

a. Narrowly applicable in the sense that it could give incorrect results 
unless the boundary curves were of a very simple shape and orientation. 

b. Ad hoc in the sense of apparently not being based on any general 
principles. 

c. User-hostile in the sense that its implementation involved a series of 
logical branches whose net result was not easily discernible. As a result, 
the algorithm appeared difficult to verify, debug, modify, or incorporate 
confidently into laser programs. 

d. Expensive in the sense of requiring considerable computer time for 
determining the location of a given point relative to prespecified boundary 
or phase lines. 

1-1 
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<Z) 
PAPA 

DELTA CHARLIE BRAVO ALFA 

Figure 1-1. Point PAPA and Boundary Lines 
ALFA, BRAVO, CHARLIE, and DELTA 
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1-3. SCOPE. This paper develops an algorithm for determining where a given 
point is located relative to prespecified boundary or phase lines. The • 
algorithm presented here is: 

a. Widely applicable in the sense that it gives correct answers even when 
the boundary curves are complex in shape and orientation. 

b. Explicitly based on general principles. 

c. User-friendly in the sense that its implementation involves a 
straightforward computation whose net result is easily discernible. As a 
result, the algorithm should be easy to verify, debug, modify, or incorporate 
confidently into larger programs. 

It still requires a fair amount of computer time to determine the location of 
a point, but it is not expected to need more than the one originally proposed 
for use in NUFAM. 

1-4. LIMITATIONS. The algorithm presented here is sometimes inconsistent in 
its assignment of points on (or quite close to) the boundary. That is, it 
may sometimes count these points to the left of the boundary when they 
actually are on or to the right of it, and vice versa. However, this 
phenomenon occurs only for points on or so close to the boundary that 
machine-specific limitations on arithmetic precision affect the results. 
Such limitations arise from inescapable restrictions on the number of 
significant figures used in the computations, and hence affect all such 
algorithms. 

1-5. TIMEFRAME. Not applicable. 

1-6. KEY ASSUMPTIONS. The key assumption is that the boundary curves can 
adequately be approximated by polygonal lines. The same assumption is used 
in NUFAM and in many other computer simulations. In this paper, we adopt the 
convention that all boundary or phase lines, all polygonal lines, and all 
closed curves (whether smooth or polygonal) are considered to be oriented. 
Henceforth, the fact that they are oriented will be mentioned only 
occasionally as a reminder or for emphasis. But the fact that they are 
oriented is always to be understood, even if it's not mentioned explicitly. 
In this paper, we adopt a further convention for boundary or phase lines 
separating friendly from enemy territory. This is, that friendly forces or 
territory always lies to the left of an oriented boundary or phase line, and 
enemy forces or territory to the right of it. Examples of how this is 
implemented are shown in Chapter 3. 

1-7. APPROACH. The approach is based on the general theory of winding 
numbers developed for the mathematical theory of complex functions (see 
Ahlfors, pp 92-94, among others). The winding number of a prespecified 
(oriented) closed curve with respect to a given point is the number of times 
the prespecified closed curve winds (in a counterclockwise direction) about 
the given point. In Figure 1-2, the closed curve GOLF winds zero times about 
the point PAPA-O, once (counterclockwise) about the point PAPA-1, and twice 
(counterclockwise) about the point PAPA-2. To apply winding number theory to 
determining the location of points relative to an (oriented) boundary or 
phase line, we extend the boundary or phase line to form a closed (oriented) 
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curve. The extension of a boundary or phase line to a closed curve can be 
done either before or after the boundary line is approximated by a polygonal 
line. Figure 1-3 shows the stages in going from an original boundary line, 
to an approximating polygonal one, to a closed polygonal curve. The 
approximating polygonal boundary line can be chosen in many different ways, 
and the extension to a closed polygonal curve can also be done in many 
different ways. Naturally, the analyst should choose a closed polygonal 
curve that facilitates subsequent analysis. 

(X) 
PAPA-jaf' 

GOLF 

Figure 1-2. Closed Curve Golf Illustrating Winding Number With 
Respect to Points PAPA-0, PAPA-1, and PAPA-2 
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Figure l-3a. Original Oriented Boundary Line 

Figure l-3b. An Oriented Polygonal Approximation To the 
Original Oriented Boundary Line 

Figure l-3c. An Oriented Closure Of An Approximating 
Polygonal Boundary Line 
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The benefits from replacing an original boundary line by a closed polygonal 
curve arise from the following facts: 

a. Points to the left of the original boundary line are inside the closed 
polygonal curve, and hence have winding numbers of one with respect to it. 
Also, points to the right of the original boundary line are outside the 
closed polygonal curve, and hence have winding numbers of zero with respect 
to it. Hence, we have replaced the original problem of determining whether a 
given point is to the right or left of the boundary line with the problem of 
calculating the winding number of the closed polygonal curve with respect to 
the given point. 

b. The winding number of a closed polygonal curve with respect to a point 
can be computed by a simple finite algorithm. 

Hence, a simple finite algorithm suffices to determine whether a point is to 
the left or right of the original boundary line. The details of this 
development are provided in Chapter 2. Examples are presented in Chapter 3. 

1-8. CONCLUSIONS 

a. A simple finite algorithm suffices to determine the location of a 
point relative to (oriented) boundary or phase lines. The resultant 
algorithm is widely applicable in the sense that it gives correct answers 
even when the boundary curves are complex in shape and orientation. It has 
the merit of being based explicitly on general mathematical principles. It 
is user-friendly in the sense that its implementation involves a straight- 
forward computation whose net result is easily discernible. As a result, the 
algoritihm should be easy to verify, debug, modify, or incorporate 
confidently into larger programs. 

b. The algorithm still requires a fair amount of computer time to 
determine the location of a point, but it is not expected to need more than 
the one originally proposed for use in NUFAM. The algorithm also is 
sometimes inconsistent in its assignment of points on (or quite close to) the 
boundary. That is, it may sometimes count these points to the left of the 
boundary when they actually are on or to the right of it, and vice versa. 
However, this phenomenon occurs only for points on or so close to the 
boundary that machine-specific limitations on arithmetic precision affect the 
results. Such limitations arise from inescapable restrictions on the number 
of significant figures used in the computations, and hence affect all such 
algorithms. 

1-9. OBSERVATIONS. Practical implementation of the algorithm would be aided 
by the development of a fast-running subroutine that could be incorporated 
into large simulations or wargames such as NUFAM, Concepts Evaluation Model 
(CEM), Force Evaluation Model (FORCEM), Combat Sample Generator (COSAGE), 
Vector In Commander (VIC) and others. 

1-6 
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CHAPTER 2 

APPROACH 

2-1. APPROACH. Throughout the rest of this paper 
the original boundary or phase lines have been rep 
curves, as described in paragraph 1-7. As stated 
original problem of finding whether a point is to 
original boundary line by one of finding the windi 
polygonal curve with respect to the given point, 
procedure for obtaining the winding number of a cl 
respect to a given point. A program to perform th 
provided in Appendix D. Examples of closed polygo 
this computer program are provided in Chapter 3. 

, it will be assumed that 
laced by closed polygonal 
there, this replaces the 
the left or right of the 
ng number of the closed 
This chapter outlines a 
osed polygonal curve with 
e necessary computations is 
nal curves for use with 

2-2. NUMBER VERTICES. The first step is to number the vertices of the 
closed polygonal curve. Number them consecutively from one to N. Assign 
increasing numbers to vertices in order according to the orientation of the 
closed polygonal curve. In principle, the number "1" can be assigned 
arbitrarily to any vertex of the polygonal curve, but usually one choice is 
more convenient than the others. Since the choice does not matter to the 
theory, the analyst is free to choose the most convenient "number 1" vertex. 
Figure 2-1 shows how the 12 vertices of the closed polygonal curve from 
Figure 1-3 might be numbered. 

12 

Figure 2-1. A Vertex Numbering for the Closed Polygonal Curve from 
Figure 1-3 

2-1 
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2-3. TABULATE COORDINATES OF VERTICES. Make a table of the coordinates of 
the vertices of the closed polygonal curve. The rows of this table must 
correspond to the numbers assigned to the vertices. Table 2-1 shows how the 
table of coordinates might look for the closed polygonal curve shown in 
Figure 2-1. 

Table 2-1. Coordinates of Vertices For The Closed 
Polygonal Curve in Figure 2-1 

Vertex number 

Coordinates        1 

X y 

1 0 0 

2 7.0 0 

3 8.2 1.6 

4 9.4 2.2 

5 9.5 3.5 

6 9.9 4.0 

7 9.5 5.2 

8 10.6 6.1 

9 10-9 7.0 

10 10.6 7.9 

11 9.5 8.3 

12 0 8.3 

Observe that the notions of inside and outside are topological in nature. 
The use of this observation is that the coordinates of the vertices may be 
recorded in any convenient coordinate systems provided only that: 

a. The coordinates of the given point are recorded in the same coordinate 
system as that used to record the vertices of the closed polygonal curve, and 

b. There is a continuous (i.e., topological) mapping of the coordinates 
onto the region defined by the closed polygonal curve. 

This freedom to choose any' convenient coordinate system can be used by the 
analyst to choose one that makes his work easy. For example, the Universal 
Transverse Mercator (UTM) grid system could be used as the coordinate system. 

2-2 
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Latitude and longitude could also be used, as could an arbitrary Cartesian 
coordinate system. Provided they are used consistently once chosen, results 
will be the same no matter which coordinate system is used. (Problems arise 
at discontinuities in the UTM grid, and at discontinuities in latitude- 
longitude at the poles and at the Prime Meridian. These difficulties arise 
because the mapping of the coordinates onto the region is not topological 
across UTM grid discontinuities or across latitude-longitude discontinuities. 
However, with the possible exception of very large expanses on the globe, the 
analyst will see how to choose a convenient coordinate system that is free of 
these discontinuities.) 

2-4. OBTAIN COORDINATES OF GIVEN POINT. Obtain the coordinates of the given 
point relative to the same coordinate system used to record the locations of 
the vertices. For example, for the closed polygonal curve of Figure 2-1, the 
given point may be at x = 5 and y = 5. This point is obviously Inside the 
closed polygonal curve, and hence is to the left of the boundary line. 

2-5. FIND WINDING NUMBER. Use the algorithm of Appendix D to determine the 
winding number of the closed polygonal curve with respect to the given point. 
For the vertices shown in Table 2-1 and a given point at coordinate x = 5 and 
y = 5, the winding number will be equal to 1. 

2-6. CONTINUATION. Repeat the steps described in paragraphs 2-3 and 2-4 
until the winding numbers of all of the closed polygonal curves with respect 
to each given point have been determined. 

2-7. CAUTIONARY NOTE. Avoid closed polygonal curves that do not separate 
the plane into well-defined "inside" and "outside" pieces. Figure 2-2 is an 
example of the type of closed polygonal curve to avoid. It is not clear 
whether the shaded region is intended to be considered "inside" or "outside" 
the closed curve, which therefore fails to separate the plane into clearly 
defined "inside" and "outside" components. In fact, the algorithm of 
Appendix D assigns a winding number of minus one to points in the heavily 
shaded region, which (given the conventions adopted in paragraph 1-6) would 
be interpreted as being in enemy territory. The algorithm assigns a winding 
number of plus one to points in the lightly shaded regions, and a winding 
number of zero to points in the unshaded region. 
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Figure 2-2. Example of a Closed Polygonal Curve to Avoid 

2-8. MOVING BOUNDARY AND PHASE LINES. After units move, or boundary and 
phase lines shift, the location of the points representing unit position 
usually have to be recomputed. When movement is represented as a series of 
"snapshots" of an evolving situation, the same procedures as outlined above 
and illustrated in Chapter 3 can be applied at each "snapshot" to obtain the 
unit locations relative to pertinent boundary or phase lines. 
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CHAPTER 3 

RESULTS 

3-1. INTRODUCTION. This chapter presents some examples to illustrate the 
flexibility of the algorithm and the options it provides the analyst. The 
program in Appendix D correctly computes winding numbers for these and other 
cases that have been tried. 

3-2. A SERPENTINE-SHAPED REGION. To test the algorithm, the serpentine- 
shaped region of Figure 3-1 was constructed. This shape has no obvious 
military tactical significance, but it is suitable for testing the operation 
of the algorithm. Note that Figure 3-1 shows the vertex numbers for only the 
first and last two or three vertices. This was done to avoid cluttering the 
figure with redundant symbols. The other vertices are, of course, numbered 
in order according to the orientation of the closed polygonal curve bounding 
the serpentine shaped region. The vertex coordinates are given in Table 3-1. 
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Table 3-1. Vertex Coordinates For 
Figure 3-1 

Vertex number 

Coordinates 

X y 

1 0 0 

2 2 0 

3 2 18 

4 20 18 

5 20 2 

6 6 2 

7 6 14 

8 16 14 

9 16 6 

10 10 6 

11 10 10 

12 12 10 

13 12 8 

14 14 8 

15 14 12 

16 8 12 

17 8 4 

18 18 4 

19 18 16 

20 4 16 

21 4 0 

22 22 0 

23 22 20 

24 0 20 
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When used with the algorithm of Appendix D, the points in the shaded 
region are assigned a winding number of plus one, as they should since they 
lie inside the closed polygonal curve. Points in the unshaded region are 
assigned a winding number of zero, as they should since they are outside the 
closed polygonal curve. Points on the closed polygonal curve may be assigned 
a winding number of zero or plus one, depending on the specific numerical 
rounding method employed by the particular computer machine used to perform 
the algorithm. 

3-3. DISJOINT COMPONENTS. Figure 3-2 shows a shaded region consisting of 
two components bounded by a closed polygonal curve. Militarily the inner 
shaded area may represent a friendly force surrounded by enemy forces, who 
are themselves surrounded by a larger friendly force represented by the outer 
shaded area. Table 3-2 gives the vertex coordinates used in the algorithm of 
Appendix D. The winding number is plus one for points in either shaded 
region, and zero elsewhere. 
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Table 3-2. Vertex Coordinates For 
Figure 3-2 

Vertex number 

Coordinates 

X y 

1 0 -106 

2 0 5 

3 10 5 

4 10 10 

5 5 10 

6 5 50 

7 35 50 

8 35 10 

9 20 10 

10 20 15 

11 25 20 

12 25 40 

13 20 25 

14 10 45 

15 10 25 

16 20 15 

17 20 10 

18 10 10 

19 10 5 

20 45 5 

21 45 20 

22 55 20 

23 55 60 

24 45 40 

25 35 60 

26 -106 60 

27 -106 -106 
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a. One of the points of this example is that the algorithm will give the 
correct winding number for disjoint components, like those shown in Figure 
3-2. 

b. A second point is that this approach fails to distinguish points like 
the one at (100, 100) which are completely outside the shaded regions from 
points like the one at (30, 30) which are between the two shaded components. 
If that distinction is important, then separate closed polygonal curves can 
be used (e.g., one for the boundary of the inner shaded region, one for the 
inner and outer boundaries of the region between the two shaded components, 
and a third for the inner and outer boundaries of the outer shaded region). 

c. A third point of this example is the closed polygonal curves may be 
strung together by links like those between vertices 9 and 10 that are 
traversed twice during the circuit around the polygonal curve. The fact that 
this link is traversed once from vertex 9 to vertex 10, and again in the 
reverse direction from vertex 16 to vertex 17, causes it to "cancel out" of 
the winding number computation. Points on this link are correctly assigned a 
winding number of zero. Similarly, points on the link from vertex 3 to 
vertex 4 are correctly assigned a winding number of plus one. 

3-4. MULTIPLE ZONES. Figure 3-3 shows a closed polygonal curve that bounds 
multiple zones. This figure may correspond to a military situation where all 
territory to the left of boundary line A is held by friendly forces, 
territory between boundary lines A and AH is "no man's land," and territory 
to the right of boundary line AH is enemy-held territory.  In addition, 
various zones in friendly territory are separated by phase lines B, C, and 0. 
Similarly, zones in enemy-held territory are separated by phase line BEY. 
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a. The vertex numbers in Figure 3-3 indicate the manner in which the 
curve is traversed. This manner of traversal is chosen in such a way that 
each zone has a different winding number. Negative winding numbers indicate 
that the curve winds about the point in a clockwise manner. Positive winding 
numbers indicate that the curve winds about the point in a counterclockwise 
manner. Note that the conventions adopted in paragraph 1-6 imply that 
positive winding numbers are used for zones in friendly territory, and 
negative winding numbers are used for zones in enemy-held territory. For 
example, points in the zone between phase lines A and B have a winding number 
of plus one, and points in the zone to the right of phase line BEY have a 
winding number of minus two. 

b. Since the winding numbers uniquely identify the zones, to determine 
which zone a given point lies in it suffices to compute the winding number of 
the closed polygonal curve with respect to the given point. 

c. Table 3-3 gives the coordinates of the vertices for Figure 3-3. As 
usual, some points on the boundary may be assigned to an unrelated zone, due 
to machine-specific details of roundoff operations. This is inherent in the 
lack of exact correspondence between theoretical mathematical operations and 
those actually carried out by computing machines, and hence unavoidable. 

3-9 



CAA-RP-87-3 

Table 3-3. Vertex Coordinates For 
Figure 3-3 

Vertex number 

Coordinates 

X y 

1 20 0 

2 50 0 

3 50 30 

4 0 30 

5 0 0 

6 40 0 

7 40 30 

8 0 30 

9 0 0 

10 30 0 

11 30 30 

12 0 30 

13 0 0 

14 20 0 

15 20 30 

16 0 30 

17 0 0 

18 70 0 

19 70 30 

20 80 30 

21 80 0 

22 60 0 

23 60 30 

24 80 30 

25 80 0 

26 70 0 
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3-5. RUNNING TIME CONSIDERATIONS. The program at Appendix B is written in 
APPLESOFT BASIC. Timing checks indicate that this program, when used on an 
APPLE II computer, takes approximately 0.01 seconds per side of the closed 
polygonal curve for each given point. Therefore, we can estimate that 
computing the winding numbers for each of 10,000 given points with respect to 
a closed polygonal curve having 100 sides would take 10,000 seconds, or 167 
minutes on the APPLE II. If mainframe computers are 100 times faster, then 
they could do these computations in only about 1.7 minutes. The required 
time could be shortened if the winding number program were written to 
optimize its speed. 
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CHAPTER 4 

CONCLUSIONS AND OBSERVATION 

4-1. CONCLUSIONS 

a- A simple finite algorithm suffices to determine the location of a 
point relative to (oriented) boundary or phase lines. The resultant 
algorithm is widely applicable in the sense that it gives correct answers 
even when the boundary curves are complex in shape and orientation.  It has 
the merit of being based explicitly on general mathematical principles. It 
is user-friendly in the sense that its implementation involves a 
straightforward computation whose net result is easily discernable. As a 
result, the algorithm should be easy to verify, debug, modify, or incorporate 
confidently into larger programs. 

b. The algorithm still requires a fair amount of computer time to 
determine the location of a point, but it is not expected to need more than 
the one originally proposed for use in NUFAM. The algorithm also is 
sometimes inconsistent in its assignment of points on (or quite close to) the 
boundary. That is, it may sometimes count these points to the left of the 
boundary when they actually are on or to the right of it, and vice versa. 
However, this phenomenon occurs only for points on or so close to the 
boundary that machine-specific limitations on arithmetic precision affect the 
results. Such limitations arise from inescapable restrictions on the number 
of significant figures used in the computations, and hence affect all such 
algorithms. 

4-2. OBSERVATIONS. Practical implementation of the algorithm would be aided 
by the development of a fast-running subroutine that could be incorporated 
into large simulations or war games such as NUFAM, CEM, FORCEM, COSAGE, VIC 
and others. 
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APPENDIX B 

COMPUTER PROGRAM 

22000 
22005 
22010 
22020 
22025 

22027 
22030 
22035 
22040 
22050 
22060 
22110 
22120 
22130 

22150 
22160 

22165 
22170 
22180 
22185 

22190 

22200 
22210 
22220 
22230 
22270 
22275 
22277 
22278 
22280 
22285 
22299 
22900 
22910 
22920 

REM —FIND WINDING NUMBER 
A$ = "N" 
PI = 3.1415926536: TWOPI = 2 * PI 
HOME : PRINT "FIND WINDING NUMBER WRT COLS 
PRINT "NOTE: COLS 1 & 2 GIVE THE COORDS OF 

AN ORIENTED CLOSED POLYGON" 
PRINT 

'N" THEN INPUT "USE MATRIX NO. = " 
> "N" THEN PRINT "USE MATRIX NO. = 

'ENTER COORDINATES OF THE BASE 
= "; X 
= ": Y 

1 AND 2" : PRINT: PRINT 
THE" : PRINT "VERTICES OF 

M 

PRINT 
'; M 
POINT:" 

X 
Y 

IF A$ 
IF A$ 
PRINT 
INPUT 
INPUT 
AX = M(M,RR,1) - X 
AY = M(M,RR,2) - Y 
GOSUB 22900: REM —FIND ARG(AX,AY) 

AS VIEWED FROM THE BASE POINT 
A = 0: REM —INITIALIZE ACCUMULATOR TO ZERO 
FOR J = 1 TO RR: REM —PROCEED AROUND THE POLYGON IN ORDER OF ITS 
VERTICES 

XARG = ARG: REM —XARG = ARG OF THE PRECEDING VERTEX 

ANGLE OF VERTEX RR = VERTEX 0, 

AX = M(M,J,1) 
AY = M(M,J,2) 
GOSUB 22900: 

BASE POINT 
DEXTA = ARG - 

AS VIEWED 
A = A 
NEXT 

OMEGA 
OMEGA 
PRINT 

PRINT ' 
PRINT 

- X 
- Y 
REM —FIND ANGLE OF VERTEX J AS VIEWED FROM THE 

XARG: REM - 
FROM THE BASE 

- DEXTA = 
POINT 

ANGLE SUBTENDED BY SIDE (J-1,J) 

+ DEXTA + TWOPI * ((DEXTA < - PI) - (DEXTA> PI)) 

= A / TWOPI: REM —OMEGA = WINDING NUMBER 
= INT (OMEGA + .1): REM—ROUND TO NEAREST INTEGER 

: PRINT "WINDING NUMBER = "; OMEGA 
WRT COLS 1 AND 2 OF MATRIX "; M 
:  IF OMEGA = 0 THEN PRINT "POINT IS OUTSIDE" 

IF OMEGA> = 1 THEN PRINT "POINT IS INSIDE" 
PRINT : PRINT "DO ANOTHER BASE POINT (Y/N) = 
IF A$ < > "N" THEN GOTO 22020 
RETURN 
REM —FIND ARG(AX,AY) 
IF AX = 0 THEN ARG = SGN (AY) * PI / 2: 
ARG = ATN (AY / AX) + PI * ((AX < 0) + 2 

RETURN 

GET A$: PRINT 

RETURN 
* (AX > 0) * (AY < 0)): 

PROGRAM NOTES: 

1. The above program is in APPLESOFT Basic. 

2. ATN (AY/AX)- = ARCTAN (AY/AX), and returns a value in radians between 
(- pi/2) and (+ pi/2). 
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3. Expressions like (AX < 0) are evaluated as one if the condition in 
parentheses is satisfied, and as zero otherwise. 
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